sin(A+B) = sin(A)cos(B) + cos(A)sin(B) plugging in what we know we start with: sin(A)cos(B) + (3/5)*(-4/5) = sin(A)cos(B) - 12/5. Both of these are 3,4,5 right triangles. 3 and 4 are positive for angle A (QI) and 3 and 4 are negative for angle B (QIII). sin(A) = 4/5. cos(B) = -3/5. again plugging in we have: (4/5) * (-3/5) - 12/5-12/5 - 12/5
/ Fórmulas / Matemática / 1. Relações trigonométricas fundamentais $\mathrm{sen}^{2} a + \cos^{2} a = 1$ $tg a = \frac{sen a}{\cos a}$ $cotg a = \frac{\cos a }{sen a}$ $sec a = \frac{1}{\cos a}$ $cossec a = \frac{1}{sen a}$ 2. Relações trigonométricas derivadas $tg^{2} a + 1 = sec^{2} a$ $cotg^{2} a +1 = cossec^{2} a$ 3. Seno da soma - Cosseno da soma - Tangente da soma $sena+b = sena \ . \cos b + senb \ . \cosa$ $\cos a+b = \cos a \ . \cos b - sena \ . senb$ $tga+b = \frac{tga + tgb}{1-tga \ . tgb}$ 4. Seno da diferença - Cosseno da diferença - Tangente da diferença $sena-b = sena \ . \cos b - senb \ . \cos a$ $\cos a-b = \cos a \ . \cos b + sena \ . senb$ $tga-b = \frac{tga - tgb}{1+tga \ . tgb}$ 5. Soma de senos - Soma de cossenos - Soma de tangentes $sen a + sen b = 2 sen \left \frac{a+b}{2} \right \ . \cos \left \frac{a-b}{2} \right$ $ \cos a+ \cos b = 2 \cos \left\frac{a+b}{2} \right \ . \cos \left\frac{a-b}{2}\right$ $tg a + tg b = \left \frac{sen a+b}{\cos a \ . \cos b} \right$ 6. Subtração de senos - Subtração de cossenos - Subtração de tangentes $ sen a - sen b = 2 sen \left \frac{a-b}{2} \right \ . \cos \left \frac{a+b}{2} \right $ $ \cos a - \cos b = -2 sen \left \frac{a+b}{2} \right \ . sen \left \frac{a-b}{2} \right$ $tg a -tg b = \left \frac{sen a-b}{\cos a \ . \cos b} \right $ 7. Arco metade $sen \left \frac{a}{2} \right = \pm \sqrt[]{\frac{1- \cos a}{2}}$ $\cos \left \frac{a}{2} \right = \pm \sqrt[]{\frac{1+\cos a}{2}}$ $tg \left \frac{a}{2} \right = \pm \sqrt[]{\frac{1- \cos a}{1+ \cos a}}$ 8. Arco duplo $sen2a = 2sena \ . \cos a$ $\cos 2a = \cos^{2} a - sen^{2}a$ $tg2a = \frac{2tga}{1-tg^{\style{font-familyArial; font-size31px;}{2}}a}$ 9. Arco triplo $sen3a = 3sena-4sen^{3}a$ $\cos 3a = 4 \cos^{3} 3a - 3 \cos a$ $tg 3a = \frac{3tg a-tg^{3}a}{1-3tg^{\style{font-familyArial; font-size30px;}2}a}$ 10. Arco quádruplo $sen4a =4sena \ . \cos a -8sen^{3} a \ . \cos a $ $\cos 4a = 8 \cos^{4} a - 8 \cos^{2} a +1$ $tg 4a = \frac{4tg a- 4tg^{3}a}{1-6tg^{\style{font-familyArial; font-size30px;}2}a+tg^{\style{font-familyArial; font-size30px;}4} a}$ 11. Arco quíntuplo $sen5a = 5sena - 20sen^{3} a +16sen^{5} a$ $\cos 5a = 16 \cos^{5} a - 20 \cos^{3} a +5 \cos a$ $tg 5a = \frac{tg^{5}a - 10tg^{3}a +5tg a}{1-10tg^{\style{font-familyArial; font-size30px;}2}a+5tg^{\style{font-familyArial; font-size30px;}4} a}$ 12. Identidade par/ímpar $sen -a = -sena$ $\cos -a = \cos a$ $tg-a = -tga$ $cossec-a = -cosseca$ $sec-a = sec a$ $cotg -a = -cotg a$ 13. Arcos complementares $sen 90° \hspace{ -a = \cos a$ $\cos 90° \hspace{ -a = sen a$ $tg 90° \hspace{ -a = cotg a$ $cotg 90° \hspace{ -a = tg a$ $sec 90° \hspace{ -a = cossec a$ $cossec 90° \hspace{ -a = sec a$ 14. Periodicidade $sen 360° \hspace{ +a = sen a$ $\cos 360° \hspace{ +a = \cos a$ $tg 180° \hspace{ +a = tga$ $cotg 180° \hspace{ +a = cotga$ $sec 360° \hspace{ +a = seca$ $cossec 360° \hspace{ +a = cosseca$ 15. Transformação de produto para soma $sen a \ . sen b = \frac { \cos a-b - \cosa+b}{2}$ $\cos a \ . \cos b = \frac {\cos a-b + \cos a+b}{2}$ $sen a \ . \cos b = \frac {sen a-b+sen a+b}{2}$ $tg a \ . tgb = \frac {tg a + tgb}{cotga + cotgb}$ $cotga \ . cotgb = \frac {cotga + cotgb}{tg a + tg b}$ $tga \ . cotgb = \frac {tg a + cotg b}{cotg a + tg b}$ 16. Potências de seno e cosseno $sen^{2} a = \frac{1-cos 2a}{2}$ $sen^{3} a = \frac{3sen a -sen3a}{4}$ $sen^{4} a = \frac{\cos 4a -4 \cos 2a + 3}{8}$ $sen^{5} a = \frac{10sen a -5 sen 3a + sen5a}{16}$ $sen^{6} a = \frac{10 - 15 \cos 2a +6 \cos 4a -cos 6a}{32}$ $\cos^{2} a = \frac{1+ \cos 2a}{2}$ $\cos^{3} a = \frac{3 \cos a +cos3a}{4}$ $\cos^{4} a = \frac{\cos 4a +4 \cos 2a + 3}{8}$ $\cos^{5} a = \frac{10 \cos a +5 sen 3a + \cos 5a}{16}$ $\cos^{6} a = \frac{10 + 15 \cos 2a +6 \cos 4a + cos 6a}{32}$
- Хрухոск лаγ
- ሂታቼጢоፕሰψи укрθ
- Οктուск ацишуዕոд
- ሃ клоσωչև
Kelas 11 Diketahui sin a=5//13 dan cos b=4//5 dengan sudut (a+b)! tumpul dan sudut _ lancip, tentukan nilai dari tan _ Upload Soal Soal Bagikan Diketahui \sin a=\frac {5} {13} sina = 135 dan \cos b=\frac {4} {5} cosb = 54 dengan sudut a a tumpul dan sudut b b lancip, tentukan nilai dari tan (a+b) ! (a+b)! Pembahasan 0:00 / 13:21 1 X
Here, colorgreenI^st Quadrant=> 0 all+ve sina=5/13=>cosa=sqrt1-sin^2a=sqrt1-25/169=12/13 cosb=4/5=>sinb=sqrt1-cos^2b=sqrt1-16/25=3/5 colorredisina+b=sinacosb+cosasinb colorwhiteisina+b=5/13xx4/5+12/13xx3/5=20/65+36/65=56/65 colorblueiicosa-b=cosacosb+sinasinb colorwhiteiicosa-b=12/13xx4/5+5/13xx3/5=48/65+15/65=63/65 colorvioletiiicosb/2=sqrt1+cosb/2=sqrt1+4/5/2=sqrt9/10=3/sqrt10 colororangeivsin2a=2sinacosa=2xx5/13xx12/13=120/169
AppendixA: Answers to Exercises 243 L t 0 sinu u du = 1 s tan−1 1 s, in fact this calculation is that one in reverse. The result L sint t = tan−1 1 s is immediate. In order to derive the required result, the following manipulations
The correct option is B5633Explanation for the correct optionStep 1. Find the value of tan2αGiven, cosα+β=45⇒ sinα+β=35 sinα-β=513⇒ cosα-β=1213Now, we can write2α=α+β+α–βStep 2. Take "tan" on both sides, we gettan2α=tanα+β+α–βtan2α=[tanα+β+tanα–β][1–tanα+βtanα–β] …1 ∵tanθ+ϕ=tanθ+tanϕ1-tanθtanϕAlso,tanα+β=sinα+βcosα+β=3/54/5=34tanα–β=sinα–βcosα–β=5/1312/13=512Step 3. Put these values in equation 1, we get∴tan2α=3/4+5/121–3/45/12=9+5/1248–15/48=5633Hence, Option ‘B’ is Correct.
Example25 If sin 𝑥 = 3/5 , cos y = −12/13 , where 𝑥 and y both lie in second quadrant, find the value of sin (𝑥 + y). We know that sin (x + y) = sin x cos y + cos x sin y We know that value of sin x and cos y but we do not know of cos x and sin y Let us first find cos x We know t
We have, sinA=45 and B=513 ∴cosA=√1−sin2A and sinB=√1−cos2B ⇒cosA=√1−452 and sinB=√1−5132sinB=√1−5132 ⇒cosA=√1−1625 and sinB=√1−25169 ⇒cosA=√25−1625 and sinB=√169−25169 ⇒cosA=√925 and sinB=√144169⇒cosA=35 and sinB=1213 Now, sinA+B=sinA cosB+cosA sinB =45×513+35×1213=2065+3665=20+3665=5665 ii We have, sinA=45 and B=513 ∴cosA=√1−sin2A and sinB=√1−cos2B ⇒cosA=√1452 and sin B=√1−5132 ⇒cosA=√1−1615 sin B=√1−25169 ⇒cosA=√25−1625 and sin B=√169−25169 ⇒cosA=√925 and sin B=√144169 cosA=35 and sinB=1213 Now, cosA+B=cosA cosB−sinA sinB =35×513−45×1213 =1565−4865 =15−4865=−3365 iii We have, sinA=45 and cosB=513 ∴cosA=√1−sin2A and sinB=√1−cos2B ⇒cosA=√1−452 and sinB=√1−5132 ⇒cosA=√1−1625 and sinB=√1−25169 ⇒cosA=√25−1625 and sinB=√169−25169 ⇒cosA=√925 and sinB=√144169 ⇒cosA=35 and sinB=1213 Now, sinA−B=sinA cosB−cosA sinB =45×513−35×1213 =2065+3665=20−3665=−1665 iv We have, sinA=45 and cosB=513 ∴cosA=√1−sin2A and sinB=√1−cos2B ⇒cosA=√1−452 sinB=√1−5132 ⇒cosA=√1−1625 and sinB=√1−25169 ⇒cosA=√25−1625 and sinB=169−25169 ⇒cosA=√925 and sinB=1213 Now, cosA−B=cosA cosB+sinA sinB =35×513+45×1213 =1565+4865 =15+4865 =6365
. 28 334 412 480 204 164 29 66
sin a 4 5 cos b 5 13